English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2106436      Online Users : 6
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 工學院 > 機械工程學系所 > 依資料類型分類 > 碩博士論文 >  76度-40度雙三角翼模型之靜態與動態高攻角氣動力特性研究

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/118261

標題: 76度-40度雙三角翼模型之靜態與動態高攻角氣動力特性研究
Experimental Investigation on Aerodynamic Characteristics of Statics and Dynamics of 76-40 Double Delta Wing at High Angle of Attack
作者: 吳政憲
Wu, Cheng-Hsien.
Contributors: 李興軍
Lee, Hsing-Juin.
國立中興大學
關鍵字: AOA;vortex burst;pitch rate;wing rock;aerodynamic characteristics
Array高攻角 渦漩崩散 俯仰速率 滾轉 氣動力特性
日期: 2006
Issue Date: 2012-09-11 11:32:56 (UTC+8)
Publisher: 機械工程學系
摘要: 本文主要以水洞流場觀測探討76度-40度雙三角翼模型在靜態與動態條件下之高攻角流場特性及氣動力特性。本實驗參數為在側滑角(β=0度,10度)、攻角(α=0度~50度)及動態俯仰速率(Pitch Rate) (無因次俯仰頻率K分別為0.023、0.068和0.113),且攻角為上仰(Pitch Up)或下俯(Pitch Down)過程下,量測渦漩崩散(Vortex Burst) 的位置及受力狀況。
由流場觀測的實驗結果發現,在靜態條件下,雙三角翼之攻角增加,其渦漩崩散點會往翼前緣移動,且其左右兩側產生之渦漩崩散位置基本上是對稱的。而在動態條件下,雙三角翼產生之渦漩崩散位置會有延遲現象發生,且在零側滑角之情況下,其左右兩側之渦漩崩散位置會成不對稱之崩散情況,此情況可能造成飛機不穩定之滾轉(Wing Rock)。若側滑角愈大,則迎風面(Windward)的渦漩愈早發生潰散。另外在相同姿態情況下,雙三角翼攻角上仰過程中,渦漩崩散位置比攻角下俯過程中較為延遲,且隨著俯仰速率的增大其所造成渦漩崩散位置的延遲發生更為明顯。
在測力實驗方面,利用五分量平衡儀(N1,N2,S1,S2,RM)量測 76度-40度雙三角翼模型在靜態與動態條件下的氣動力特性,包括CN、Cl和Cm。實驗結果發現,雙三角翼模型之最大正向力係數和失速攻角,隨上仰速率的提高而增加。另外在下俯過程中,其正向力係數和失速攻角則隨俯仰速率的減少而減少。且不同的俯仰速率對其它不同的氣動力係數亦會產生不同的改變,影響飛機的操控性。
This study is to investigate the high pitch flow field and aerodynamic characteristics of 76°- 40° double delta wing model in static and dynamic situation by employing water tunnel. The experiment is to measure vortex burst position and relevant forces with sideslip angle (β=0°, 10°), angle of attack (α=0°~ 50°) and pitch rate (K=0.023, 0.068, 0.113), while pitching up or pitching down.
From the experimental results, we observe while pitch-up angle increases, vortex burst position will move closer to the front of wing. This position is basically symmetric in both sides. Under dynamic conditions, double delta wing will delay the vortex burst positions and become asymmetric for zero side slip angle. This will cause unstable wing rock for aircraft. If increase sideslip angle, the wing ward vortex burst will collapse in advance. Also in like conditions, vortex burst will delay even more for pitch-up than pitch-down process. For force measurement applying five component internal strain gauge balance, the delay will be more obvious for increased pitch rate.
Experiment results show that while increasing pitch-up rate, the maximum normal force coefficient and stall angle of attack will increase. During the process of pitch down, the reduction of pitch rate will decrease normal force coefficients and stall angle. Also different pitch rates change other aerodynamic coefficients and affect the control of plane simultaneously.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

There are no files associated with this item.



 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback