English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2106436      Online Users : 6
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/119650

標題: 6061鋁合金之高速銑削行為與實驗探討
Experimental Investigation on Characteristics of High-Speed Milling of 6061 Aluminum Alloy
作者: 陳永正
Chen, Cheng-Young
Contributors: 蔡志成
Jhy-Cherng Tsai
國立中興大學
關鍵字: High Speed Milling;HSC;cutting;Taguchi;6061-T651;face-milling;slot-milling;side-milling
高速銑削;高速切削;切削;田口法;鋁合金;面銑;槽銑;側銑
日期: 1999
Issue Date: 2012-09-11 11:49:34 (UTC+8)
Publisher: 機械工程學系
摘要: 高速切削是一種利用淺切深、高速進給和高切削速度的方式進行加工,不但可以大幅降低加工成本與時間外,並有熱變形小與切削力低的優點。本文首先針對文獻不足處進行刀刃運動路徑分析,並推導出切屑形狀、切削力和側銑表面粗糙度之理論模式;另外以輕合金加工所常用之6061-T651鋁合金進行實驗,文中以田口實驗設計法規劃面銑、槽銑和側銑三種銑削方式進行實驗驗證與製程最佳化參數之探討,除了將所獲取的銑削力和銑削動力以及表面粗糙度進行探討外,並根據表面粗糙度與銑削力的品質特性,提供最佳的製程參數組合。
本研究透過MAKINO-A55工具機進行實驗,實驗結果發現,表面粗糙度實驗值與理論值有所差異,面銑為1.2-3倍,槽銑為10-12倍,而側銑則為20倍左右;同時亦發現高速切削的確可得到相當優異的表面,如面銑Ra <0.5m,槽銑Ra <2m,而側銑Ra <0.4m。又經田口法分析後,當面銑之刀具直徑愈大時,則表面品質下降;而表面品質最佳的製程參數組合是每刃進給0.06mm/tooth、切削速度850m/min、切削深度0.2mm、刀具直徑50mm、切削寬度與刀具直徑比為70%;而在銑削深度0.2mm時銑削力最小,此與表面粗糙度的最佳參數表現不謀而合。另槽銑實驗則發現每刃進給影響最大,較小的進給量可以獲得較佳的表面;至於最佳表面粗糙度的製程參數組合為每刃進給0.035mm/tooth、切削速度410m/min、切削深度0.1mm和刀具直徑16mm。側銑表面粗糙度最佳參數組合則為每刃進給0.035mm/tooth、切削速度360m/min、切削深度8mm、切削寬度0.3mm和刀具直徑20mm,其中影響最大的因子亦為每刃進給。
再者,當切深愈大時,除了銑削力相對增大外,刃口積屑緣的情形也會相對增加。另以頻譜分析亦發現表面粗糙度與銑削力之頻譜相當契合,此現象應值得再深入探討。
High-speed cutting (HSC) is a machining method with low cutting depth, high feed rate and high cutting speed. It takes the advantages of lower machining time and cost as well as low thermal deformation and low cutting force. This thesis first analyzes the trajectory of a cutting edge and then drives the shape of chips, cutting force and surface roughness base on the trajectory. Experiments using the commonly used aluminum alloy 6061-T651 on a MAKINO-A55 machine tool is then designed and conducted to verity the surface roughness and to find the process parameters for best surface roughness. Experiments are designed by the Taguchi method in order to minimize the number of experiments.
The result shows the real surface roughness is higher than the ideal one from 1.2 to 3 times for face milling; 10 to 12 times for slot milling and about 20 times worse for side milling. It also shows good surface finish can be easily achieved by HSC, for example, Ra<0.5m for face milling; Ra<2m for slot milling, and Ra<0.4m for side milling. Process parameters for best surface roughness are allocated based on the ANOVA (ANalysis Of VAriance) and the S/N (Signal to Noise) ratio. It is found that the tool diameter plays as the most important factor in face milling. The surface quality become worse as it increases. Minimum cutting force is obtained at depth of cut being 0.2mm which is consistent with the best surface finish. The feed per cutting edge, on the other hand, has been found as the most affective factor in slot milling and in side milling. Better surface finish can be achieved by reducing feed per cutting edge.
Analysis of experimental data further finds that cutting forces and built-up edges increase as the depth of cut increases. Moreover, it is also found strong co-relation between the surface roughness and cutting force from frequency spectrum. This phenomenon is worthy of further investigation.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

There are no files associated with this item.



 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback