English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2106602      Online Users : 3
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 工學院 > 生醫工程研究所 > 依資料類型分類 > 期刊論文 >  Cascade steepest descendant learning algorithm for multilayer feedforward neural network

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/131603

標題: Cascade steepest descendant learning algorithm for multilayer feedforward neural network
作者: Wang, G.J.;Chen, J.J.
王國禎
關鍵字: multilayer feedforward neural network;parameter self-tuning learning;injection molding temperature control;dynamical-systems;identification
日期: 2000
Issue Date: 2012-12-07 16:29:08 (UTC+8)
關連: Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, Volume 43, Issue 2, Page(s) 350-358.
摘要: In this article, a new and efficient multilayer neural networks learning algorithm is presented. The key concept of this new algorithm is the two-stage implementation of the steepest descendant method. At the first stage, the steepest descendant method is used to search the optimal learning constant eta and momentum term alpha for each weights updating process. At the second stage, the Delta learning rule is then employed to modify the connecting weights in terms of the optimal eta and alpha. Computer simulations show that the proposed new algorithm outmatches other learning algorithms both in converging speed and success rate. On real industrial application, we first apply the new neural network learning algorithm to the identification of a highly nonlinear injection molding barrel system. Experimental results demonstrate that the new algorithm can precisely identify the complicate injection molding barrel system. Further more, a self-tuning PID controller for precise temperature control based on the trained neural network barrel model is developed. Real experiments show that the self-tuning PID controller can precisely control the barrel temperature within +/-0.5 degrees C.
Relation: Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing
Appears in Collections:[依資料類型分類] 期刊論文
[依教師分類] 王國禎
[依教師分類] 王國禎

Files in This Item:

There are no files associated with this item.



 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback