English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2021456      Online Users : 2
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 理學院 > 理學院 > 依資料類型分類 > 期刊論文 >  Effective segmentation and classification for HCC biopsy images

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/133573

標題: Effective segmentation and classification for HCC biopsy images
作者: Huang, P.W.;Lai, Y.H.
黃博惠
關鍵字: HCC biopsy image;Morphological grayscale reconstruction;k-nearest;neighbor;Support vector machine;Feature selection;Decision-graph;renal-cell carcinoma;support vector machines;mathematical morphology;pathological images;astrocytomas;algorithms;prostate;tracking;features;snakes
日期: 2010
Issue Date: 2012-12-14 10:04:14 (UTC+8)
關連: Pattern Recognition, Volume 43, Issue 4, Page(s) 1550-1563.
摘要: Accurate grading for hepatocellular carcinoma (HCC) biopsy images is important to prognosis and treatment planning. In this paper, we propose an automatic system for grading HCC biopsy images. In preprocessing, we use a dual morphological grayscale reconstruction method to remove noise and accentuate nuclear shapes. A marker-controlled watershed transform is applied to obtain the initial contours of nuclei and a snake model is used to segment the shapes of nuclei smoothly and precisely. Fourteen features are then extracted based on six types of characteristics for HCC classification. Finally, we propose a SVM-based decision-graph classifier to classify HCC biopsy images. Experimental results show that 94.54% of classification accuracy can be achieved by using our SVM-based decision-graph classifier while 90.07% and 92.88% of classification accuracy can be achieved by using k-NN and SVM classifiers, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Relation: Pattern Recognition
Appears in Collections:[依資料類型分類] 期刊論文
[依教師分類] 黃博惠
[依教師分類] 黃博惠

loading Web of Knowledge data....

Files in This Item:

File SizeFormat
index.html0KbHTML380View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback