English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2138616      Online Users : 9
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 理學院 > 應用數學系所 > 依資料類型分類 > 期刊論文 >  Estimation of an unknown distributed heat source in the inverse heat conduction problem

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/135687

標題: Estimation of an unknown distributed heat source in the inverse heat conduction problem
作者: Char, M.I.;Chang, F.P.;Tai, B.C.
關鍵字: inverse problem;heat source;Borukhov-Vabishchevich method;Newton;method;numerical-solution;parabolic equation;source-term;strength
日期: 2007
Issue Date: 2012-12-14 12:05:35 (UTC+8)
關連: Journal of the Chinese Society of Mechanical Engineers, Volume 28, Issue 4, Page(s) 397-404.
摘要: This article presents a hybrid numerical method to predict the unknown space and time dependent strength of heat source in one-dimensional inverse heat conduction problems. The hybrid numerical algorithm is based on the Borukhov-Vabishchevich (2000) and Newton's iterative method. The spatial distribution of the heat source strength is represented a priori as the series forms of the known function and. the unknown coefficient in the parameter estimation can be adjusted from the improperly initial distribution to the acceptable one automatically using the Newton's iterative method. To confirm the validity and efficiency of the present method, two comparative examples are presented. Comparisons are made between the present estimations and the exact solutions, and the agreement is found out to be generally good.
Relation: Journal of the Chinese Society of Mechanical Engineers
Appears in Collections:[依資料類型分類] 期刊論文
[依教師分類] 賈明益

Files in This Item:

There are no files associated with this item.






聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback