English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2021514      Online Users : 3
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/152186

標題: 辣椒素在 B16F10 細胞株引發細胞自噬及細胞凋亡
Capsaicin induces apoptosis and autophagy in B16F10 cells
作者: 呂卓穎
Lu, Cho-Ying
Contributors: 闕斌如
Pin-Ju Chueh
生命科學院碩士在職專班
關鍵字: 辣椒素;細胞自噬;細胞凋亡;黑色素瘤
capsaicin;autophagy;apoptosis;melanoma
日期: 2013
Issue Date: 2013-11-07 13:14:48 (UTC+8)
Publisher: 生命科學院碩士在職專班
摘要: Melanoma is a malignant tumor of melanocytes. If melanoma is found at early stage, it can be removed completely by surgery and the chance of cure is high. Unfortunately, if it is diagnosed late it may lead to skin cancer-relatred death. The treatments to melanoma these days include chemo- and immunotherapy, and radiation therapy. Capsaicin has an anti-proliferative effect in vitro on prostate, colon, gastric, hepatic and leukemic cancer cell lines. It is demonstrated that capsaicin inhibited melanoma cacncer cell lines, however, most of the mechanisms are still unclear.
In this study, we used rat melanoma cell line, B16F10, for the evaluation of the anticancer effect of capsaicin . We found that the percentage of apoptosis and changes of mitochondrial membrane potential are notably increased in high concentration of capsaicin (400 μM). Western blot also shows that high concentration of capsaicin decreases Bcl-2 protein. Low concentrations of capsaicin are found to not to activate PARP (Poly ADP ribose polymerase) resulting in no apoptosis. While oxidative stress is not significantly different among different concentrations of capsaicin. We suggest that high concentration of capsaicin might induce apoptosis in B16F10 through mitochondrial dependent pathway. We also found that low concentrations of capsaicin (10, 100 μM) result in autophagy induction in B16F10 cells. Western blot also shows that high concentration of capsaicin increases the level of mTOR phosphorylation. On the other hand, low concentrations of capsaicin increase beclin-1 and autophagy. We suggest that capsaicin-mediated autophagy may involved in cell survival mechanism in B16F10 cells.
Thus, we propose to utilize inhibitors of autophagy to examine the percentage of apoposis in B16F10. Similarly, inhibitors of apoptosis will be used to study the autophagy mechanism in B16F10 cells, with the hope to find out the relationship between autophagy and apoptosis in capsaicin-exposed B16F10 cells.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML130View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback