English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2076989      Online Users : 2
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/152650

標題: 非侵入式阻抗技術於任意形狀植物组織電路模型參數之建置
A Non - invasive Electrical Impedance Technique to Characterize Plant Tissue with Arbitrary Shape
作者: 林啟民
Lin, Chi-Min
Contributors: 陳澤民
生物產業機電工程學系所
關鍵字: 電阻抗頻譜;單位電容率;柯爾-柯爾方程式;幾何形狀;複數非線性最小平方法
Electrical impedance spectroscopy;Specific capacitance;Cole-Cole equation;Geometrical shape;Complex non-linear least squares
日期: 2012
Issue Date: 2013-11-18 11:00:49 (UTC+8)
Publisher: 生物產業機電工程學系所
摘要: 交流阻抗頻譜量測方式已被廣泛用於生物阻抗的量測,本研究應用四電極表面量測技術,以胡蘿蔔為對象,採非侵入式方式於植物體組織表面量測交流阻抗,量測結果與前人採電極侵入式之研究結果相互比較,其相關係數可達0.96。在同步探討分佈電路及集總電路等效電路模型之參數時,集總電路模型之相對標準差(Relative standard deviation, RSD)約在6.12%以下,而分佈電路模型RSD則約在4.15%以下,顯見分佈電路模型具有較佳的適化結果,該結果並顯示胡蘿蔔之細胞結構、細胞大小、分佈範圍較具有一致性,而在集總電路與分佈電路電路模型所得到各參數之單位電容率與單位電阻率,其細胞膜與液泡之單位電容率分別為1.15μF/cm2及1.19μF/cm2 ,細胞外液 (ρe)、細胞內液 (ρi)、細胞質 (ρ2)及液泡 (ρ4) 之單位電阻率分別為37.88Ω-m、1.89Ω-m、 26.29Ω-m及 3.34Ω-m, 鬆弛時間 (τ) 及其分佈係數(α) 分別是 8.29 μs及 0.838,與相關文獻之研究結果近似,驗證非破壞性表面阻抗量測方式之可行性,不僅可免除傳統生化量測法繁複、耗時之前置作業,並可排除因破壞性取樣對植物本身之影響以及降低傳統組織樣本尺寸之量測誤差。
以四電極非侵入式之表面量測,使用等效長度與截面積之比率,轉換各參數之單位電容率與單位電阻率,而不受限於組織樣本之幾何形狀,藉由分佈電路模型所得到之細胞外液Re,作為集總電路中相對應R1之初值,減少參數之自由度,解決了在相同總阻抗值下,其組合電路各參數值非唯一之問題,兩種電路模型相互應用,可更正確判斷其生理變化。
本研究具有可即時分析植物狀況生理變化,不需繁複之生化前置作業,可應用於葉面數目較少高經濟價值觀賞花卉之研究,如蝴蝶蘭葉面阻抗量測與生理狀況即時分析,未來於探討環境變化與植物體各參數值之關係將有極大助益。
The electrical impedance spectroscopy measurement method has been widely applied to bio impedance analysis. Using carrots as samples, this study applied four-electrode surface measurement technology, which is a non-invasive approach, to measure the plant tissue impedance without considering the geometrical shape. The correlation coefficient of the measurement results in this study was 0.96. The specific capacitances of the cell membrane and vacuole were 1.15μF/cm2 and 1.19μF/cm2 , respectively. The resistivity of the extracellular (ρe), intracellular (ρi), cytoplasm (ρ2), and vacuole (ρ4) were 37.88Ω-m, 1.89Ω-m, 26.29Ω-m, and 3.34Ω-m, respectively. The relaxation time (τ) and the distribution coefficient of the relaxation time (α) were 8.29 μs, 0.838, respectively. Since the results were similar to those in previous studies that adopt invasive approaches, the feasibility of the non-destructive surface impedance measuring method is validated. This method not only can analyze the plant physiological states in real time without complex pre-operational work, but can decrease measurement errors resulting from the geometrical shape of samples. Choosing the extracellular resistance (Re) obtained from the distributed circuit model as the initial value of the corresponding (R1) of the lumped circuit model can reduce the freedom of the parameters when solve the problem of more than one solution in the case of the same total impedance value. In advance evaluating the relationships among the environmental changes and the variations on physiological parameters of plants, this non-destructive measurement method provides real time information on the physiological condition of the plants, such as orchids and other ornamentals.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML136View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback