English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2021192      Online Users : 3
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/154549

標題: 頸動脈超音波頻譜影像之自動化切割與辨識研究
A Study of Automatic Segmentation and Recognition Technology for Common Carotid Artery Ultrasound Spectrum Images
作者: 陳巧旻
Chen, Chiao-Min
Contributors: 蔡垂雄
Chwei-Shyong Tsai
資訊管理學系所
關鍵字: 頸動脈;有效波型特徵;超音波頻譜影像;影像辨識;影像切割
common carotid artery;effective waveform feature;ultrasound spectrum image;image recognition;image segmentation
日期: 2012
Issue Date: 2013-11-21 10:49:44 (UTC+8)
Publisher: 資訊管理學系所
摘要: 醫學影像切割與辨識技術已廣泛應用於各種疾病之診斷。現今之醫學影像輔助診斷儀器所造影之醫學影像提供的訊息是豐富的,可以保留人工判讀之資訊並且提高診斷的之準確性。隨著老年人口快速劇增,罹患慢性疾病的發病率也日漸增加,其中常見的莫過於心血管之慢性疾病。都卜勒之頸動脈血流超音波頻譜影像是目前診斷心血管疾病之重要工具,由於心血管慢性疾病大多數為頸動脈血管之病變,血管狹窄或是血管阻塞是主要的疾病原因,因此頸動脈之檢查是目前不可或缺的檢驗項目之一。本研究提出一種新的方法,能具體讀取頸動脈都卜勒血流超音波頻譜影像,並自動切割並重建都卜勒之頸動脈血流超音波頻譜影像接著透過超音波影像擷取有效之波形特徵,其有效特徵為五種,分別是: 波型區域面積之比例、水平基準線下之區域面積標籤、水平基準線下之波形面積、波形區域之最高點與波形區域之最低點為五種特徵。本研究方法可自動切割波形區域,傳統上由醫師來區分正常與五種異常之血流型態,在新系統中之五種特徵可診斷血流型態其切割重建之準確率為0.97以及辨識血流型態之準確率為0.97,顯示透過此項技術可幫助醫師正確地並有效診斷血管疾病。
Medical image segmentation and recognition technology has been widely used in the diagnosis of various diseases. The information in medical images from modern instruments is rich. With the application of image recognition technology, manual reading time can be saved and diagnostic accuracy can be enhanced.With rapid expansion of the population of elderly people, the incidence of chronic diseases also increased. The most common among them is no doubt the cardiovascular diseases. The Common Carotid Artery (CCA) ultrasound spectrum image is an important tool in diagnosis of cardiovascular diseases. As vascular stenosis or occlusions are the main pathological change of vascular disorders, carotid artery examination is essential in the diagnosis of cardiovascular diseases.This thesis proposes a new method specific to the reading of ultrasound spectrum images of common carotid artery blood flow. The proposed scheme automatically segments reconstruction the waveform image and extracts effective waveform features from the images for diagnostic purposes by using the following five criteria: the ratio of the waveform region, the waveform region area target under the horizontal baseline, the waveform region area under the horizontal baseline, the highest point of the waveform region, and the lowest point of the waveform region.The proposed scheme can automatically segment the waveform region. Traditionally used by physicians to differentiate between normal blood-flow patterns and five abnormal blood-flow types, these five criteria are now employed by the new system to digitally diagnose vascular disorders at an accuracy rate as high as 0.97 and a segments reconstruction accuracy rate as high as 0.97. With this technology, physicians can diagnose vascular disorders correctly and efficiently.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML181View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback