English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2021070      Online Users : 3
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 管理學院 > 運動與健康管理研究所 > 依資料類型分類 > 碩博士論文 >  應用羅吉斯和類神經網路分析健康行動過程路徑與改變階段之實證研究

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/154623

標題: 應用羅吉斯和類神經網路分析健康行動過程路徑與改變階段之實證研究
The Empirical study on The Health Action Process Approach and The Stages of Change – Application of Logistic Regression and Neural Networks.
作者: 黃宇溱
Huang, Yu-Jen
Contributors: 巫錦霖
Ching-Lin Wu
運動與健康管理研究所
關鍵字: 規律運動;健康行動過程路徑;跨理論模式;Logistic迴歸;類神經網路
Regular Exercise;The Health Action Process Approach;Transtheoretical model;Logistic Regression;Neural Networks
日期: 2013
Issue Date: 2013-11-21 11:07:35 (UTC+8)
Publisher: 運動與健康管理研究所
摘要: 目的:本研究旨在驗證健康行動過程路徑(HAPA)搭配跨理論模式(TTM)是否適用於台灣青少年的規律運動行為,及規律運動行為方面的預測效果,瞭解行為意圖與行為之間的作用機制,發展出規律運動行為的影響因素模式。方法:採自編結構式問卷進行調查,研究對象隨機抽樣中興大學選修體育課的學生,發出問卷300份,有效問卷254份作為研究樣本,有效回收率84.7%。統計資料以集群分析、單因子變異數分析、對應分析、中介效果分析、決策樹分析、Logistic迴歸、類神經網路、路徑分析進行分析。所得資料以SPSS for Window 19.0進行統計分析。結果:一、研究對象「無規律運動習慣」的人數有135人,「有規律運動習慣」的人數有119人。二、研究對象的運動行為改變階段以行動期最多(37.8%),其次分別為準備期(33.1%)、維持期(15.3%)、意圖期(13.0%)無意圖期(0.8%)。三、集群分析在「健康促進運動行為意圖」、「健康行為自我效能」、「運動控制過程」、「維持運動自我效能」、「知覺運動障礙」等變數有顯著差異。四、「運動控制過程」在「健康促進運動行為意圖」及「運動行為改變階段」之間扮演著部分中介的角色。「健康促進運動行為意圖」對「運動行為改變階段」直接效果為0.647,透過「運動控制過程」對「運動行為改變階段」產生0.207的間接效果。五、學習速率為0.75時,模型得出最佳的學習效果,預測正確率分別為90.9%與86.4%;AUC值分別為.979與.919;外推能力分別為1.6%與1%。六、預測未來還能保持在維持行動期的學生,Logistic迴歸分析敏感度為83.1%,類神經網路分析敏感度為84.9%;整體預測準確率Logistic迴歸分析為80.7%,類神經網路分析為85.4%。結論:現在若能養成規律運動習慣將是未來保持規律運動的主要因素,能在大學階段培養規律運動習慣,不僅能有助於提升國內規律運動人口比例,亦是對未來身體健康產生顯著助益,產生疾病的風險達到降低之目的。
Purposes: The aim of this study was to investigate regular exercise behavior amount college student using the Health Action Processes Approach (HAPA) with the Trans Theoretical Model (TTM). The models were using to predict the regular exercise behavior, and to understand the behavioral intention and its mechanisms. Subsequently, we developed the possible model of the factors to influence regular exercise behavior. Method: 300 college students were randomized recruited from National Chung Hsing University who enrolled in Physical Education classes for the present study. Subjects completed self-developed structured questionnaires, which 254 valid questionnaires were used for analysis (the effective recovery rate 84.7%). The data was analyzed using Cluster analysis, one-way ANOVA, Correspondence analysis, Mediator Effect analysis, Decision Tree analysis, Logistic Regression analysis, Neural Networks, Path analysis. Results: (1) There were 135 subjects "without regular exercise" and, 119 subjects with " regular exercise". (2) The Stages of Change of exercise behavior, 37.8% of subjects were at the action stage, 33.1% at the preparation stage, 15.3% at the maintenance stage, 13% at the intention stage, and only 0.8% at the no intention stage. (3) The significant differences were found in “Health Promotion Exercise Behavioral Intention”, “Perceived Health Self-efficacy”, “Exercise Control Toward”, “Maintain Exercise Self-efficacy” , “Perceived Exercise Barriers” after Cluster analysis. (4) The “Exercise Control Toward ” was played the role of partial mediation between the “Health Promotion Exercise Behavioral Intention” and “Stages Change of Exercise Behavior”. The direct effect of “Health Promotion Exercise Behavioral Intention” on “Stages Change of Exercise Behavior” was considered at 0.647, and the indirect effect was at 0.207 mediated through “Exercise Control Toward”. (5) The model obtained the best learning result at 0.75 learning rate. The prediction accuracy were 90.9% and 86.4%; AUC values were 0.979 and 0.919; the extrapolation ability were 1.6% and 1%. (6) Predicting the students keeping in the maintenance action stage, the sensitivity was at 83.1% by Logistic regression analysis, and at 84.9% by neural network analysis. The overall prediction accuracy by Logistic regression analysis was 80.7%, and the neural network analysis was 85.4%. Conclusion: Collegiate students develops regular exercise habit is one of the major factor for maintaining regular exercise in the future. To develop regular exercise habit at the college stage may be able to obtain health benefit and also to reduce the risk of chronic diseases in the future.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML184View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback