English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2020639      Online Users : 2
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/154649

標題: 使用情緒分析於圖書館使用者滿意度評估之研究
A Study on Library Users’ Satisfaction Evaluation Using Sentimental Analysis
作者: 張育蓉
Zhang, Yu-Jung
Contributors: 郭俊桔
圖書資訊學研究所
關鍵字: 使用者滿意度;情緒分析;圖書館
users’ satisfaction;sentimental analysis;library
日期: 2012
Issue Date: 2013-11-21 11:09:37 (UTC+8)
Publisher: 圖書資訊學研究所
摘要: 圖書館服務品質與使用者滿意度息息相關,圖書館為瞭解使用者滿意度,每年皆會進行使用者滿意度調查。然而,傳統評估方法有些實施上的限制且須耗費大量人力、時間與成本,無法立即反映出圖書館問題,也無法確實得知使用者之不滿意事項,並及時改善。因此,利用情緒分析探究社群網路上(如噗浪等)之使用者對於圖書館的意見屬於正向或負向,並以圖形方式顯示評估結果,可及時提供圖書館業務調整與改善使用者滿意度。
本研究由社群網路上蒐集使用者對圖書館的意見,藉由人工標記方式標記出使用者情緒、情緒詞、否定詞和情緒搭配詞後,擷取出相關情緒分析用之字典。為了將使用者意見自動分類為館員、館藏、服務、設備和空間與環境等五大類,使用KNN、NB和SVM等資料探勘工具分別探討分類成效。接著,分別使用程度詞加權之情緒分析法和情緒極性與類別象限之情緒分析法,針對每一類的語料集探討情緒分析的成效。最後,探討使用長條圖和雷達圖等圖形化方式呈現使用者情緒。
本研究除提出使用情緒分析於使用者滿意度評估的系統架構,也驗證其可行性。主要的貢獻則有:(1)建置情緒詞、情緒搭配詞、程度詞與否定詞辭典,並摘選出專屬圖書資訊學領域使用之情緒分析辭典;(2)語料前置處理,例如,特殊句型之情緒詞判定,建議反諷句以情緒搭配詞標記,比較句則加以改寫;(3)使用KNN分類器進行語料類別分類成效最佳;(4)利用情緒極性與類別象限搭配Plurk語料進行情緒分析,可得到令人滿意的情緒分析結果;(5)將情緒分析以長條圖和雷達圖呈現,除可清楚顯示圖書館優劣之處,更可以改善圖書館服務而得到更高的使用者滿意度。
As the quality of library service is closely linked with the users’ satisfaction, the libraries usually employ the questionnaire to collect and analyze the users’ satisfaction annually. However, due to difficulty of questionnaire design, low recycle rate and difficulty of statistics analysis and explanation, the results obtained from questionnaire cannot show the real users’ satisfaction. Moreover, as the questionnaire method cannot provide the on-line users’ satisfaction, the librarians cannot deal with the related service problems immediately. On the contrary, as the rapid growth of social network, the opinions can be collected from Internet and analyzed to understand sentiments, i.e., positive or negative, and sentimental trend of the users easily.
Thus, this dissertation employs the sentimental analysis to extract the users’ positive or negative opinions from the social network, e.g. Plurk. First, the library users’ opinions are collected from social network and used as the corpus. This corpus is annotated manually to tag sentimental words, negative words, sentimental collocation words, degree words and users’ sentiments. Then, the related dictionaries for sentimental analysis are extracted. In order to cluster the users’ opinions into 5 categories, i.e., librarians, collections, services, equipments and environment, KNN, NB and SVM are used to evaluate the classification performance. Additionally, two sentimental analysis methods, which are weighted degree words methods and polarity-strength methods, respectively, are proposed to study the performance of sentimental analysis.
As the experimental results are similar to the results of both using questionnaire method and manual annotations, the feasibility and effectiveness of the proposed methods can be proved. Besides, as the graph representations, i.e., radar charts and bar charts, approaches are employed to show the evaluation results, the users’ satisfaction can be easily obtained and understood so as to be able to improve the library services in time and enhance the users’ satisfaction.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File Description SizeFormat
nchu-101-7097014004-1.pdf2518Kb312View/Open
index.html0KbHTML174View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback