English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2024862      Online Users : 2
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/154820

標題: 非對稱微透鏡陣列之製程設計與開發
Process Design and Development of Asymmetric Microlens Array
作者: 洪建欣
Hung, Chien-Hsin
Contributors: 楊錫杭
His-Harng Yang
精密工程學系所
關鍵字: 非對稱微透鏡陣列;舉離法;斜向熱熔法;光控膜
asymmetric lens array;lift-off method;oblique melting method;light-control film.
日期: 2013
Issue Date: 2013-11-21 11:19:08 (UTC+8)
Publisher: 精密工程學系所
摘要: 本研究開發出一種應用於光控膜上的非對稱微透鏡陣列製程,透過該微透鏡可以增進液晶顯示器收集側向光源效率,並改善視角內所產生的眩光問題。本研究開發出三種不同製程來製作非對稱透鏡陣列,第一種製程以舉離法在晶圓上形成一凸起或凹陷的銅膜基座,再進行光阻塗佈之後,透過光罩對位方式來進行曝光,顯影之後便可獲得圓形光阻柱形成於基座上,利用銅膜基座改變光阻在完全熱熔之後液態光阻與基座之間的接觸面積與接觸形態,進而改變液態光阻的表面張力,當晶圓倒置斜放之後,光阻熱熔時,銅基座除了可以精確控制液態光阻的底面形狀之外,也可有效防止液態光阻滑移,可以製作出高度較高、曲率半徑較小的非對稱微透鏡陣列,第二種製程為利用斜向曝光及顯影製程,在晶圓上產生一具圓形截面的斜向光阻柱陣列,然後將晶圓倒置斜放再利用不完全熱熔法與重力效應製作非對稱微透鏡陣列,第三種製程為先以微影製程與舉離法製作第一層金屬薄膜圓柱,再進行第二次微影製程將光阻以偏移對位曝光之方式覆蓋於第一層金屬薄膜圓柱,透過金屬圓柱的疏水性大於基板,在熱熔時在金屬圓柱上的光阻拱起使其成為非對稱微透鏡,而在該三種製程中皆可製作出非對稱微透鏡陣列,其中以第一種製程所製作出的斜透鏡陣列偏斜角可以高達55°。
This study develops an asymmetric microlens array process applied to light-control films, through the lateral light collecting efficiency of liquid crystal displays can be enhanced and the glare issue generated in the viewing angle can be improved. The study proposed three different processes to produce the asymmetric microlens array, among which the first process adopts the lift-off method to form a raised or sunken copper based film on the wafer, then after the photoresist coating and exposure with the way of mask qlignment is done. Finally, the circular columns of photoresist are formed on the base after development. The copper metal film is used to change the contact area and contact pattern between the liquid photoresist and the base after the photoresist is fully melted, and then further change the liquid photoresist surface tension . After the wafer is face-down, laced and inclined, when the photoresist is melted, the copper film base can accurately control the bottom shape of the liquid photoresist. In addition, it can effectively prevent the liquid photoresist slippage, through which a high and small-radius-of-curvature asymmetric micro-lens array can be produced. The second process utilizes the oblique exposure and the developing method to produce an oblique photoresist column array with circular cross sections on the wafer, and then the wafer is face-down placed and inclined to produce an asymmetric micro-lens array through the incomplete melt method and the gravitational effect. The third process uses the lithography process and lift-off method firstly to prepare the first layer of metal columns, and then the second lithography is used to cover the photoresist on the first layer of metal columns through offset alignment exposure method. Since the hydrophobicity of the metal columns is greater than the base, the photoresist on the metal column will bulge to make it form an asymmetric microlens array in the melting process. These three processes can be used to produce the asymmetric lens array. However, the first process can produce the asymmetric micro-lens array with an offset angle of up to 55 �.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML131View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback