English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2077412      Online Users : 2
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 工學院 > 機械工程學系所 > 依資料類型分類 > 碩博士論文 >  高抗反射矽晶太陽能電池之微奈米複合陣列結構製備

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/155126

標題: 高抗反射矽晶太陽能電池之微奈米複合陣列結構製備
Fabrication of Highly Anti-Reflection Micro-Nano Multistructure Array for Silicon Solar Cell
作者: 劉錫謙
Liu, Hsi-Chien
Contributors: 王國禎
Guo-Jen Wang
機械工程學系所
關鍵字: 太陽能電池;兩階段金屬輔助蝕刻法;平面奈米線陣列結構;微奈米複合陣列結構;液體擴散源;抗反射層;反射率
Solar cells;Two-stage metal-assisted-etching method;Antireflective layer with a planar nanowire array;Antireflective layer of a micro-nano hybrid structure array;acid-diffusion source;anti-reflection layer
日期: 2013
Issue Date: 2013-11-21 11:37:08 (UTC+8)
Publisher: 機械工程學系所
摘要: 本論文之目的乃是以單一階段金屬輔助蝕刻法與兩階段金屬輔助蝕刻法,發展高抗反射之矽晶太陽能電池。主要研究主題為:(1)平面奈米線陣列結構之抗反射層製作(2)微奈米複合陣列結構之抗反射層製作(3)以低成本液體擴散源於微奈米複合陣列結構表面製作P-N junction,並封裝為高抗反射之矽晶太陽能電池。
(1) 平面奈米線陣列結構製作:以兩階段輔助蝕刻於六吋矽基板表面成功製作高抗反射之平面矽奈米線陣列結構,製程時間僅為15分鐘,矽奈米線陣列於光波長200 – 1000 nm 之平均反射率可降至1.89%,於紫外光與可見光之平均反射率分別為1.49%與1.89%,且於紅外光波長範圍可達2.32%之平均反射率。
(2) 微奈米複合陣列結構製作:以兩階段輔助蝕刻於六吋矽基板之金字塔結構表面成功製作高抗反射之微奈米複合陣列結構,並且大幅縮短兩階段蝕刻製程時間至5分鐘以內,微奈米陣列於光波長200 – 1000 nm 之平均反射率可降至1.21%,於紫外光與可見光之平均反射率分別為0.74%與1.12%,且於紅外光波長範圍亦可達1.97%之平均反射率。
(3) 高抗反射之矽晶太陽能電池製作:以低成本之液體擴散源於微奈米複合陣列結構製作P-N junction,並成功整合抗反射結構開發高抗反射之矽晶太陽能電池,微奈米複合結構矽晶片可吸收較多光子,使得光電轉換效率可達9.019 %,較金字塔結構矽晶片提升59 % 之短路電流,入射光子轉換效率量測結果顯示微奈米結構電池於紅外光波長範圍具有極佳之外部量子效率。
兩階段蝕刻法主要優勢為可迅速製作高抗反射率之矽晶太陽能電池,並可於六吋矽基板生長高均勻性與高垂直性之矽奈米線陣列結構,在紫外光、可見光以及紅外光波長範圍皆有良好之光吸收效能,並且成功突破平面奈米結構與目前矽晶太陽能電池之抗反射率,未來將可規劃大面積生產製程,應用於矽晶太陽能產業。
The object of this paper to develop a high- antireflection silicon solar cell using the single-stage and two-stage metal assisted etching methods, respectively. The major research topics are : (1) Fabrication of an antireflective layer with a planar nanowire array (2) Fabrication of an antireflective layer of a micro-nano hybrid structure array (3) Fabrication of a high antireflection silicon solar cell combining a P-N junction formed using a cost-effective liquid diffusion source with the micro-nano hybrid structure array.
(1) Fabrication of an antireflective layer with a planar nanowire array : A novel two-stage metal-assisted etching (MAE) method is proposed for the fabrication of a high anti-reflection silicon nanowire array. In the first stage of etching, a high-concentration etchant is implemented in a short etching time to enable the uniform and complete deposition of coniferous-like silver on the wafer surface. Following the first stage, a low-concentration etchant for producing a vertical and uniform silicon nanowire array is processed in a relatively long etching time. Experimental results demonstrate that the proposed two-stage MAE method can produce high anti-reflection silicon nanowire array on a 6" silicon wafer requiring only a relatively simple and low-cost process. The P-type high-resistance (PH) silicon wafer that is etched under the two-stage MAE with the first-stage and second-stage processing time of 30 s and 15 min, respectively, can achieve an average reflectivity of 1.89% for the light spectrum from 200 nm to 1000 nm. In the UV and visible-light regions, the average reflectivity are 1.49% and 1.89%, respectively.
(2) Fabrication of an antireflective layer of a micro-nano hybrid structure array: The developed two-stage MAE method is further used for the fabrication of an antireflective layer of a micro-nano hybrid structure array. The processing time for the etching on a N-type high-resistance (NH) silicon wafer can be reduced to less than 5 min. The resulting micro-nano hybrid structure array can achieve an average reflectivity of 1.21% for the light spectrum from 200 nm to 1000 nm. In the UV and visible-light regions, the average reflectivity are 0.74% and 1.12%, respectively. The average reflectivity in the IR region can be reduced to 1.97 %.
(3) Fabrication of a high antireflection silicon solar cell : A P-N junction on a fabricated micro-nano hybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13% can be achieved attributed to the high light-absorbing capability of the micro-nano hybrid structure. When compared to a pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The measured Incident light conversion efficiency indicates that the proposed solar cell has an excellent external quantum efficiency in the IR region.
The major advantage of the proposed two-stages MAE method is that a high anti-reflective silicon solar cell can be fabricated in a relatively short time and cost-effective manner when compared with the conventional fabrication approach. The fabricated silicon solar cells possess very good light-absorbing capability in the UV, visible-light, as well as the IR regions. It is feasible that the proposed method can be applied to the mass production process of low-cost solar cells.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML154View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback