English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2079053      Online Users : 23
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 理學院 > 應用數學系所 > 依資料類型分類 > 學術性活動資料 >  Adaptive Decomposition Finite Difference Methods for Singular Partial Differential Equations in Applications

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/67463

標題: Adaptive Decomposition Finite Difference Methods for Singular Partial Differential Equations in Applications
作者: Professor Qin Sheng
日期: 2009-12-03
Issue Date: 2010-04-21 11:45:28 (UTC+8)
摘要: Various kinds of splitting, or decomposition numerical methods have been playing important roles in the numerical solution of nonsingular partial differential equations due to their remarkable efficiency, simplicity and flexibility in computations as compared with their peers. Although the numerical strategy is still in its infancy for solving singular differential equation problems arising from many applications, explorations of the next generation decomposition schemes associated with different kinds of grid adaptations can be found in many recent publications. In this talk, we will discuss a few latest developments in the field. Key comments will be devoted to the direct solutions of degenerate singular reaction-diffusion equations and nonlinear sine-Gordon wave equations. Simulated numerical experimental results will be presented.
Appears in Collections:[依資料類型分類] 學術性活動資料

Files in This Item:

File SizeFormat
2009-12-03 Professor Qin Sheng.pdf2616KbAdobe PDF445View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback