English  |  正體中文  |  简体中文  |  Items with full text/Total items : 43312/67235
Visitors : 2021430      Online Users : 5
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU/NCHU Library IR team.
National Chung Hsing University Institutional Repository - NCHUIR > 理學院 > 化學系所 > 依資料類型分類 > 碩博士論文 >  (1)製備殼核球型中孔洞奈米金屬@矽複合材料: Metal/PVP@MCM-41 (2)利用水熱法合成新型架構之錳氧化物

Please use this identifier to cite or link to this item: http://nchuir.lib.nchu.edu.tw/handle/309270000/95050

標題: (1)製備殼核球型中孔洞奈米金屬@矽複合材料: Metal/PVP@MCM-41 (2)利用水熱法合成新型架構之錳氧化物
(1)Metal/PVP@MCM-41 Core-Shell Synthesis of a Spherical, Mesoporous Silica/Metal Nanocomposite: Metal/PVP@MCM-41 (2)Hydrothermal Synthesis of Manganese Oxide with Novel Architectures
作者: 陳隆京
Chen, Lung-Jing
Contributors: 曾炳墝;林弘萍;吳嘉文;黃景帆
林寬鋸
中興大學
關鍵字: hydrothermal;solvothermal;nano;metal;particle;alloy;platinum;siliver;catalyst;hydrogenation;manganese oxide;sphere;schist-like;electrochemical capacitor;water treatment
水熱;溶劑熱;殼核;奈米;金屬;粒子;合金;白金;;催化;氫化;錳氧化物;球型;片岩狀;電化學電容;水處理
日期: 2012
Issue Date: 2012-08-31 14:12:46 (UTC+8)
Publisher: 化學系所
摘要: 此篇畢業論文包含下述兩個主題: (1)製備殼核球型中孔洞奈米金屬@矽複合材料:Metal/PVP@MCM-41(Metal=Pt, Ag); (2)利用水熱法合成新型架構之錳氧化物。
奈米粒子發展至今其特殊物理及化學性質已經被應用在許多光、電、磁及化學催化應用上。此篇論文中,拓展金屬奈米粒子的應用性上,我們使用溶膠合成法,一個簡易的合成步驟,不需要修飾任何官能基,而在被包覆物的奈米粒子表面就能將金屬奈米粒子與中孔洞材料-MCM-41做進一步的結合,形成金屬-氧化矽奈米複合孔洞材料,藉由控制實驗環境來合成出球型的MCM-41,而金屬粒子則鑲嵌在孔道之中並且能夠穩定的存在於中孔洞MCM-41材料之中。在經過煅燒除去界面活性劑之後金屬粒子還是能夠穩定的存在於材料之內。在進一步的催化反應實驗中,孔洞材料能夠提供被催化物與催化粒子有足夠的空間來進行反應,而在經過多次催化反應後奈米粒子的活性與中孔洞架構仍然保持完整。除此之外,此奈米複合物質也不會因物質的尺寸過小,不便於分離產物與催化觸媒。
錳氧化物近來成為熱門的研究題材,主要原因是其特殊的物理特性: a)其氧化價數範圍廣,可從+2價到+7價; b) 晶型結構之多樣性,從非晶相組成到孔洞性晶型架構; c)外在型貌的多樣性,如常見的粒子狀、柱狀及線狀。除了上述的物理性質之外,錳氧化物也具有價格低廉、來源充足、低毒性及對環境污染性低等優點,對於應用在能源儲存裝置、電極材料、污染物的處理、磁性材料應用,及常見的化學催化應用上都是熱門的材料選項之一。但一般的錳氧化物的製程有不少的缺點,例如反應時間過長、反應步驟繁雜、晶型及形狀控制不易、合成成本過高、產量不大等缺點。在此篇論文中,我們使用水熱或溶劑熱合成法來加以避免上述等缺點,使用簡單、快速的製備流程,並且利用所選擇的界面活性劑當成板模來合成並控制生成各種型貌的錳氧化物,並且依據其物性及化性將其進一步應用在電容及催化應用。
There are two topics in this dissertation: (1) core-shell synthesis of a spherical, mesoporous silica/metal nanocomposite: metal/PVP@MCM-41 (metal=Pt, Ag), and (2) hydrothermal synthesis of manganese oxide with novel architectures.
Nanoparticles can be used in many applications such as optics, electricity, magnetism and catalysis because of nanoparticles containing special physical and chemical properties. In this dissertation, we proposed a facile synthesized process in a single step to combine metal nanoparticles with porous material MCM-41 to produce Metal/PVP@ MCM-41 without modification to any organic ligand on the surface of nanoparticles to link the porous support by sol-gel method. The core-shell approach, whereby nanoparticles enclosed by protecting agents are grown in the channels of porous materials, is of considerable technological importance for improving the lifetime and reusability of catalysts. Herein, we describe the direct synthesis of spherical, mesoporous, nano-sized metal composites (Metal/PVP@MCM-41) via core-shell approach. This work also indicates that the high surface area of the metal nanoparticles can be maintained for long periods of time at the catalyst's operating temperature. Our work continues in the design of stable, nanoparticles and their use as reusable catalysts.
Manganese oxides had been investigated as important transitional metal oxide material because of specific properties, diversity of crystal structure and various kinds of morphologies. The physical and chemical features can be adjusted by the oxidation state, crystalline, channel type and shape to design for specific applications. There are many synthetic methods for producing different kinds of manganese oxides. However, these methods such as sol-gel, redox precipitation, template replica, spray pyrolysis and electrochemical deposition have some disadvantages like, long reaction time, crystal structure and shape not controllable, complicated steps, expensive process and difficult to large-scale synthesis. We proposed a facile, fast and low cost producing process and combined with surfactant-based supramolecular templates to produce different shapes manganese oxides by hydro/solvothermal method. Thanks to the properties and architecture of manganese oxide we prepared, like wormhole-like giant cavities, exceptional thermal stability and intrinsic electrical conductivity, they should be expected to display better performance in the application of semiconductor catalysts and supports, energy storage, and electrochemical applications. This synthetic method can be further expanded to the preparation of other manganese oxide-based materials with various morphologies in order to meet diverse applications.
Appears in Collections:[依資料類型分類] 碩博士論文

Files in This Item:

File SizeFormat
index.html0KbHTML899View/Open


 


學術資源

著作權聲明

本網站為收錄中興大學學術著作及學術產出,已積極向著作權人取得全文授權,並盡力防止侵害著作權人之權益。如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員,將盡速為您處理。

本網站之數位內容為國立中興大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用。

聯絡網站維護人員:wyhuang@nchu.edu.tw,04-22840290 # 412。

DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU/NCHU Library IR team Copyright ©   - Feedback